TROPICAL CYCLONES AS BIOCLIMATIC ACTIVATORS: Part III

By J. GENTILLI, Nedlands.

(Continued from p. 11\%)

THE TROPICAL CYCLONE OF DECEMBER 29, 1954, TO JANUARY 2, 1955

This was a perfeet example of a well-developed eyclone which could affeet the mainland for some four or five days, while erossing the whole distance from Port Hedland to Eucla in less than 24 hours, following the most common path, and leaving a trail of disrupted communieations, with some of the worst damage in the last 30 years. This eyelone's contribution to the spread of moisture was remarkable, as the series of maps shows.

The eyelone was still a long way from Australia, north-west of Broome, when its first rains hit the mainland, on the night of Wednesday, Deeember 29. The heaviest falls were not in the Kimberleys but farther south: Mulga' Downs, in the Forteseue, had 290 points in 24 hours, Bamboo Springs, in the De Grey, 251, and Wittenoom Gorge, also in the Fortescue, 158. Port Hedland had only 50 points. As the map shows, the heavy falls of rain oeeurred along the windward slopes of the Hamersley Plateau, and not along the eoast. The Kimberleys reecived only a few points, the heaviest recorded fall being at Calwynyardah with 59 points.

On Deeember 30 the eyelone was nearer to the coast, and the rainfall had beeome a little more widespread. Port Hedland reeeived 348 points, Pippingarra 314, Mardie 289, Carlindi 221. Wittenoom Gorge was left on the fringe of the area of heavy rains, and reecived 19 points during that day. At 9 a.m. on Deeember 31 the centre of the eyelone was about 100 miles north-west of Roebourne, and rains were heavy and widespread. Between 9 a.m. and 3 p.m. Port Hedland reeeived 102 points. By the evening the eyclone had moved to within 50 miles west-north-west of Roebourne, travelling south at some 15 miles per hour. Extremely strong winds were experieneed at Roebourne between 10 and 11.30 p.m., then there was about an hour's ealm while the centre of the eyclone passed over. By 12.30 a.m. the wind had started to blow from the west, and a gust attained about 100 miles per hour. The total rainfall in about seven hours was 708 points. Wittenoom Gorge, also hit by extremely strong winds, reeorded 545 points.

Meekatharra reecived plentiful rains for the first time in four years, with 183 points between 9 a.m. on Deeember 31 and 9 a.m. on January 1. During the day the eye'one was slowly moving inland, and Mundiwindi, which it reaehed at about 9 a.m. on January 1, received 274 points in the preceding 24 hours, and some 200 more during January 1. Some spectacular falls oceurred well ahead of the eyelone; when the eentre of it was still well north of the Tropie,

Map 5. TROPICAL CYCLONE OF DECEMBER, 1954-JANUARY, 1955. (See footnote, opposite, for detailed explanation.)
localities in the Eastern Goldfields were deluged. Yundamindera received 400 points, Murrin Murrin 396, Laverton 337, Leonora 325, Sandstone 176. Places which usually reccive scanty winter rains got some of the heaviest tropical downpours: Rawlinna rcceived 372 points and Forrest 126.

During the following 24 hours (cnding at 9 a.m. on January 2) rain fell mostly south of the tropic. The cyclone gradually accelerated and crossed the southern shore between 10 and 11 p.m. on January 1, after releasing 218 points of rain over Mundiwindi, 191 over Wiluna (and only 14 over Meckatharra), 327 over Earaheedy, 328 over Laverton (and only 73 over Leonora), 28 over Kalgoorlie, 288 over Rawlinna and 104 over Forrest.

By the morning of January 2 the eyclonc had become an ordinary frontal depression, travelling eastwards in the Great Australian Bight, causing strong northerly winds over south-eastern Australia, followed by a cold front with light rains, which continued until January 4.

TABLE V
 about $57,213,500$ acre/feet.

THE TROPICAL CYCLONE OF FEBRUARY-MARCH, 1956

This cyclone is the only one recorded in Western Australia as having described a loop in its course. Therc have been cyclones which pursued irregular courses, the most remarkable being that of Januar'y, 1903, which travelled southwestwards from January 10 to 12, then veered eastwards and northeastwards on January 13 and 14, resuming a normal trajectory on January 16. The cyclone of April, 1920, (shown by a dotted line on the inset map) came from the ocean, cut the coastline more or less perpendicularly near Wallal, and then veered sharply to the right and disappeared over the sea in the oppositc direction, only some 100 miles from Wallal.

[^0]Several of the Queensland eyelones show similar irregularities, and the eyelone of January, 1922 (see inset), which went as far as New Zealand, made a distinct loop to the right (i.e., eyelonieally) between latitudes 27° and $30^{\circ} \mathrm{S}$. Tannehill (1952) diseusses the tracks of the eyclones of October, 1910, and September, 1943, in the Caribbean area. These eyclones deseribed a definite loop to the left, i.e., also cyclonically. Tannehill quotes expert opinion to the effect that a eyelone eannot deseribe a loop to the right (i.c., antieyelonieally) beeause of the impossibility of having suitable barometrie situations.

A loop to the lelt in the Northern Hemisphere eorresponds to one to the right in the Southern Hemisphere, both being eyelonic in their sense of deviation. Thus there is no difference beween the tracks quoted by Tannehill for the Caribbean region and the Gulf of Mexieo, and the traek reeorded north of New Zealand in 1922. The anomaly oecuis in the ease of the Western Australian cyelone of February-March, 1956 (see map) beeause this eyelone deseribed a large loop to the left, i.e., antieyelonically. The only other: example known to the writer of a tropical eyelone which describes a loop ant eyelonieally is that of the typhoon of November, 1926, which began east of the Palaus and deseribed a large loop before passing very c'ose to Manila (Bruzon and Carton, 1930).

The Western Australian eyclone deseribed a loop with a longer axis of over 800 miles and a shorter axis of about 200 miles. The Palau-Manila typhoon of 1926 is shown by Bruzon and Carton as having deseribed a loop with a longer axis of about 220 miles and a shorter axis of about 140. The Western Australian cyclone took 10 days to deseribe its loop, whereas the Caribbcan hurrieanes mentioned by Tannehill deseribed their loops in three days each, and the New Zealand eyclone of 1923 deseribed its loop in two days only.

Until 1956 the longest eyclonie traeks in low latitudes over Australia were those followed by the eyelones of January 18 and February 18, 1923, which began in the Coral Sea and erossed the entire width of Northern Australia before recurving and skirting the whole length of the Western Australian coast, some 3,000 to 3,500 miles in all. If the traek followed as a frontal eyelone is added to the traek of the tropieal cyclone proper, the eyelone of February 18, 1923, may have held a remarkable record, heeause it went very nearly as far as Tasmania before being lost sight of, eovering some 4,700 miles in 14 days (sec broken line on inset map). The track of the tropical eyclone of February-Mareh, 1956, extended for 3,700 miles from its unknown ineeption off King Sound to its exit west of Albany 16 days later. It was still clearly reeognizable as a frontal cyclone on the weather charts for March 5 and 6 , thus adding some 1,000 more miles to its original track, and reaching the same exceptional traek length of 4,700 miles (see inset map). It eertainly eovered the longest distanee over Western Australian territory of any eyclone on reeord.

Because of the fact that so much of the track was over the occan, the amount of precipitation brought by this cyclonc, although remarkable, is not outstanding.

CYCLONE OF

Map 6. TROPICAL CYCLONE OF FEBRUARY-MARCH, 1956. The main map shows the path of the cyclone's centre over Western Australia (dotted line) with the respective dates, and the total rainfall brought by the cyclone (in points). Notice the considerable loss of travelling speed from February 29 to March 2. The insct shows the most notable paths of tropical cyclones in the Australian zone. Notice the difference in the location of the loop of the 1956 cyclonc on the main map and the inset; the main map is drawn from Press reports, the inset from published weather maps.

TABLE VT
RAINFALL BROUGHT BY THE FEBRUARY-MARCH, 1956, CYCLONE

Rainfall					Area	Ralnfall points			
					4. miles				sq. miles
1- 50	\ldots	..."	\cdots	226,000	1000-1500 -		11,600
50-100	\ldots	.-3u*.	130.200	1500-	\cdots	2,800
100-200	--...	.-.....-.....	58,200				
200-500	...-	.-. - .	--.	\cdots	133,000	Total in	W.A.	--	666,800
500-700		49,000	In N.T.	(very	approx.)	75,000
700-1000	\cdots	56.000				

The total amount of water brought to Western Australia was some $87,410,250$ acre/feet, or an average of 2.47 inches over the whole 666,800 square miles. If one adds a conservative estimate of $12,000,000$ aere/feet dropped over the Northern Territory, one obtains a total precipitation of nearly $99,500,000$ acre/feet.

The eyclone was first noticed on February 18, when it erossed the eoast near Broome late in the day. There was a centre of low pressure near Broome on February 16, but this centre was stationary and did not last long. The eyelone approached from the northwest, and moved rapidly. towards the south-east, weakening in the process. At this stage it could have worked its way along the trough of relatively low pressure (998-1002 millibars) which extended from Broome to Eucla, between two anticyelones situated west of Cape Leeuwin and east of Tasmania respeetively. By February 20, however, the two anticyelones had coalesced and the former western one had moved so rapidly that it lay due south of the cyelone, thus blocking its southward progress. The composite anticyelone was too small and its pressure too low (1004-1008 millibars) to fill the low eaused by the eyclone, as so often happens under similar conditions.

By February 22 the cycione had beeome almost stationary over central Australia. Some time between February 22 and 23 it could have moved southwards along the trough of low pressure formed between the anticyelone of February 20 and a new much more powerful anticyelone (1012-1014 millibars) which was advaneing from the Indian Ocean, but by then it had been over three days almost stationary over a land surface and had lost mueh of its rotatory speed. The new anticyelone continued its eastward progress and by February 26 it had a pressure of over 1020 millibars at its centre, and was pushing the cyclone north-westwards baek towards Broome. This is the most extraordinary stage in the development of this exceptional eyelone-its revival under meteorological conditions which normally lead to the filling-in and disappearance of most tropieal eyelones. After February 27, when the cyclone had resumed its full rotatory speed and was poised between Broome and Cape Leveque, it was to be expeeted that the north-western coast would feel its full impact.

On February 28 it seemed possible that the cyclone would slide between the great antieyelone mentioned above, which hat then moved beyond Tasmania, and a new anticyelone which appeared just off Cape Leeuwin. However, the new antieyelone
moved eastwards very fast, and on February 29 and March 1 held the cyclone stationary off Roebourne, making it impossible for it to follow the usual track aeross the North-West coast and through the Eastern Goldfields. During March 2 conditions were in the balance, but the cyclone had become more intense, with winds of 60 to 94 miles per hour, whercas the anticyelone was weakening and developing a trough across its middle, just off the South-West. This trough enabled the eyclone to work its way southwards along a path much farther west than usual and finally to join the westerly stream șouth of Australia.

CONCLUSION

The examples chosen show the following facts: (a) heavy rains occur well ahead of most cyclones; (b) the heaviest tropicalcyclonic rainfall is usually found north of the Hamersley block, and a peculiar pattern ol drought prevails just immediatcly west, soutt and east of this area; (c) if a tropical cyclone breaks through the anticyclonic belt its travelling speed increases and the rainfall bccomes much heavier again; (d) tropical-cyclonic rainfall is occasionally very important in the semi-arid country south of the Tropic, but it is so important north of the Tropic as to make averages utterly meaningless; (e) the tropical cyclonc of February-March, 1956, had outstanding characteristics.

ACKNOWLEDGMENT

The writer wishes to record his appreciation of the assistance given by the Perth Weather Bureau, and above all by the Deputy Director (Mr. G. W. Mackey) and the Climatologist (Mr. R. Vollprecht), who made available all the necessary data. Thanks are also expressed to Mr. C. A. Jucngling and Mr. D. M. Logue for allowing the reproduction of the text matter and maps which they prepared to illustrate the cyclones of 1947-48.

REFERENCES

The following list includes all the works eonsulted during the preparation of this paper. Comprehensive lists arc given by Duverge (64 items) and Tannehill (180 items).
Alexander, W. B., 1917: White-winged Black Tern in Western Australia: a remarkable visitation (Emu XVII: 95-100).

- 1918: White-tailed Brack Tern in Western Australia (Ети XVIII: 134-5).
Barnett, M. A. F., 1938: The cyclonic storms in northern New Zealand (Met. Off. Note No. 22, Wellington, N.Z.).
Blake, D., 1935: Mexican West-coast cyclones (Monthily Weather R. LXIII: 344-348).
Bruzon, E., and Carton, P.. 1930: Le elimat de l'Indochine ot les typhons de lat Mer de Chine (Hanoi).
Dexter, E. G., 1904: Weather Influences (New York and London).
Duverge, P.. 1951: Les cyclones de la saison 1948-1948 a Madagascar (Meme. Met. Nat. No. 36, Paris).
Gentilli, J., 1949: Phenology-a new field for Australian naturalists (W.A. Nat. II: 15).

Gentilli, J., 1955: Dic Klimate Australiens (Die Erde IX: 206-238).
Huntington, E., 1930: Wcather and Health (Bull. No. 75, N.R.C., Washington, D.C.).

Hutchings, J. W., 1953: Tropical cyclones in the south-west Pacific (N.Z. Geog. IX: 37-57).

James, R. W., 1951: Hurricancs (Sc. News XXII: 89-97).
Japanese Commission for Unesco, ed., 1955: Proccedings of the Unesco Symposium on Typlioons (Tokyo).
Knox, J. L., 1955: The storm "Hazel" (Bull. Am. Met. S. XXXVI: 239-246).
Monge, C., 1948: Acclimatiation in the Andes (Baltimorc, Md.).
Piery, M. ct al., 1934: Traite de climalologie biologique et medicalc (Paris)
Sansom, H. W., 1953: The Lindi cyclone, 15 April, 1952 (E. Afr. Mel. Dcpt. Mem., vol. III, No. 1).
Sawyer, J. S., 1947: Notes on the theory of tropical eyelones (Q.J.R. Mel. S. LXXIII, 101-126).

Serventy, D. L., 1947: The White-winged Blaek Tern near Broome (W.A. Nut. I: 68).

Serventy, D. L., and Whittell, H. M., 1948: Birds of Western Austrulia (Pcrth).
Seybold, A., Woltereck, H. el al., 1952: Kilima, Wettor, Mcnsch (Hcidclberg).
Tannchill, I. R., 1952: Hurricanes (Princeton, N.J.).
Visher, S. S., and Hodge, D., 1925: Australian hurrieancs and related storms (Buil. No. 16, Bur. of Met., Mclbournc).

FROM FIELD AND STUDY

Whate lbis at Fremantle.-On January 7, 1956, my brother Waverney and I made our first acquaintancc with the White Ibis (Threskiornis aethiopica), when a single bird was seen in the company of several Straw-necked Ibis at Bibra Lake, six miles east of Fremantlc. The ihis were feeding along the eastern shore of the lake. We again obscrved the ibis on February 4.
-JULIAN R. FORD, Fremantle.
Wambenger (Plascogale penieillata) at Coolup.-On December 19, 1955, Mr. J. D. Cox of Coolup brought me a Wambenger which his eat had eaught. He stated that this was the first specimen he had seen though he had lived at Arthgarven, Coolup, for 40 odd years and now farmed part of the original property. The farm is situated between the South-West Highway and the Murray River, about 5 miles south of Pinjarra. Most other old residents of the districts whom I have contacted have never noted the animal here, but T. M. Smith, of West Coolup, recalled seeing onc about 15 years ago. J. D. Cox's specimen was a male; weight 5 oz.; testis, $7.3 \times 5.3 \mathrm{~mm}$.; stomach, practically empty but contained some small fragments of a gecko (Pluylloductylus sp.) and remains of at least two small insects, one a beetle.
-ANGUS ROBINSON, "Yanjcttec," Coolup.
Crested ligeon at Shackleton.-A Crested Pigeon (Ocyphaps lophotes) has appeared in this district, considerably south of its rccorded range. The bird first appeared at a farm near Kokerbin Hill, 8 miles north-west of Shackleton. After a few wecks it disappeared and was next scen at our farm, which is 6 milcs northeast of Shackleton on May 20, 1956. The stiff, crect crest, deep coral pink lcgs, and characteristie habit of cocking its tail on alighting positively identily the bird.

[^0]: The map is divided into four sections, each giving the rainfall (in points) for a successive day of the cyclone's life. Heavy rainfall is reccived well ahcad of the cyclone, as shown by insets I and II. The cyclonc's centre followed the path shown by the dotted line in III and IV, with the hour of the day shown by the upright figures, underlined. Localities are shown by their initials-Port Hedland, Marble Bar, Nullagine, Wiluna, Laverton, Yundamindera, Rawlinna, Forrest.

